NECK POSTURE MEASUREMENT AMONGST SCHOOLCHILDREN

Gábor Ormos¹, Rita Kiss²
¹ National Institute for Rheumatology and Physiotherapy, Budapest
² Budapest University of Technology and Economics, Department of Structures, Research Center for Biomechanics
ormosdr@gmail.com

Abstract

Background: There is a paucity in basic data concerning neck posture in childhood. Our aim was to gain preliminary data on the head/neck/shoulder posture, and to document their evolution with growth in schoolchildren.

Methods: For measuring posture digital photographs were taken of the children seated in a straight-high-backed chair. The camera (Agfa 5Ti, 5.2 megapixels) was located perpendicularly to each subject’s height, positioned from the left side, the focus was on the tragus with a standard distance of 150 cm. The first photo was taken in the “neutral head posture” and a second photo in “resting” posture). The digital photos were then evaluated by a computer software program (distributed as Marker Angels). The angles analyzed were as follows: the craniovertebral angle (CVA), the head tilt angle (HTA), the shoulder angle (SHA).

Subjects were hundred and forty-seven 9-year old, and hundred and fourtythree 16-year old schoolchildren, who were attending public school in different districts of Budapest.

Results: In the 16-year old’s group the CVA values have been found reduced significantly (by an average of 8 degrees in neutral position and 6 degrees in resting position) compared to the 9 year olds. The HTA elevated by an average of 1.6 degrees (NS) in neutral position and reduced significantly (by 4.2 degrees) in resting position. The values of the SHA elevated significantly (by an average of 13.33 degrees in neutral position and 13.32 degrees in resting) between the 9–16 year olds, which referred to more protracted shoulder posture.

Discussion: The CVA characterizes the neck posture, the less it’s value, the more the forward position. The neck posture is in strong correlation to the head and the shoulder positions. That means forward bent neck position is in correlation to the so called “rounded” shoulder or the shoulder protraction. Although the position of the was found not consequent in neutral position, however was in correlation in resting position.

Conclusion: Measuring head/neck/shoulder posture by means of digital photos and evaluated by computer program proved easy, useful method. We obtained preliminary descriptive data on neck posture in degrees of two age groups of schoolchildren. The comparison of the results proved the tendency of progression in “poor posture” during 7 schoolyears, between in the age of 9–16.

Keywords: neck posture; schoolchildren’s posture; method for measurement
Introduction

Our investigation on neck posture has been indicated by the observation that in everyday life more and more schoolchildren look like they have their head held forward and neck postural abnormalities have been found in association with chronic neck pain in adults\(^2,8,16\). There is a paucity in the literature concerning neck posture measurement in children, we have found studies on schoolchildren’s posture in standing\(^3,6,9,12\), but only one in sitting\(^14\). To evaluate the “physiological posture”, the term “natural head position” was suggested in cephalometry, measured by x-ray pictures\(^4,5,13\); Fiebert\(^7\) determinated “neutral head posture”, which differed from the “resting head posture”, defined by Hunten\(^10\). In most studies posture has been measured by the distance from the vertical line, Braun and Amundson established measuring angles by means of photos, first the craniovertebral angle (CVA)\(^1\), then Braun measured the shoulder position by the shoulder angle (SHA)\(^2\). Szeto evaluated the head posture by videorecording, and defined it by the head tilt angle (HTA)\(^16\). Measuring posture by means of making photos on surface was doubted by Johnson\(^11\), but later has been validated by two studies\(^14,15\), and digital camera was used in the largest investigation with children\(^12\).

Our aim was to gain preliminary data on the head/neck/shoulder posture amongst schoolchildren, the study was designated to determine their neck posture in sitting by measuring the angles mentioned and comparing the two group’s data to evaluate the change in the children’s posture by aging.

Methods

Subjects were hundred and fortyseven 9-year old, hundred and thirtyeighth 12 year old and hundred and fortythree 16-year old schoolchildren who attended a public school, from different districts of the City Budapest. Informed consent was obtained from each child as well as their parents, and approval was also obtained from the institution’s ethics committee.

Digital photos were taken seated in a straight-high-backed chair, with the children touching their scapulae to the back of the chair, thus the effect of the thoracic spine could be excluded. The following anatomical landmarks were identified by small colored adhesive markers: the tragus of the ear, C7 spinous process, and the base of the nose. The subject’s position was at right angles, with left side facing the camera (Agfa 5Ti, 5.2 megapixels), the focus was on the tragus with a standard distance of 150 cm (Figure 1). The first photo was taken in the “neutral head position” (Figure 2. a), which meant that the head is centered over the midline of the body when viewed from either the antero-postero or lateral plane, or with a slight (5°) forward lean\(^7\). The second photo was taken in a relaxed, “resting” posture\(^7,10\), shown on Figure 2. b. The digital photos were evaluated by a computer software program (distributed as Marker Angels), which enabled the use of standard protocols for digitizing the angles from the photographs. The angles analyzed were as follows: CVA= between the line connecting...
necting the tragus and C7 spinous process and the x-axis, the HTA= between the line connecting the tragus and the base of the nose and the y-axis, shoulder angle (SHA)= between the line connecting the acromion and C7 spinous process and the x-axis (Figure 3).

Statistical analysis was made by Student t-test and Spearmen correlation test.

Results

The data concerning neck posture angles are shown on Table 1.

The comparison of the data amongst the groups demonstrated that in the 16-year olds CVA values have been found reduced significantly, by an average of 8 degrees (p=0.0028) and 6 degrees (p=0.0016) in resting position compared to the 9 year olds. That meant, neck posture changed into more forward position. The values of the SHA elevated significantly (p<0.0001), by an average of 13.33 degrees in neutral position and 13.32 degrees in resting between the 9–16 year olds, which referred to more protracted shoulder posture. The HTA was found elevated not significant (p=0.9145) by an average of 1.6 degrees in neutral position and became reduced significantly (0.0022), by 4.2 degrees in resting position. That meant, neck posture changed into forward flexed position, but the head’s position was not consequent.

Correlations amongst angles are shown on Table 2. The CVA values measured in neutral
and resting position were in strong correlation. The CVA neutral values were in negative correlation to HTA and SHA neutral values.

Discussion

Our results on posture correlate with the relevant literature with children\(^3,6,9,12\), and also the data published with adults\(^1,2,16\). The CVA values of age-matched children previously published were slightly lower\(^9\), but the difference is due to that they were measured in standing. The CVA angle mean value has been found 51.97° in adults\(^1\), which roughly equal to our mean data with the 16 year olds. The HTA characterizes the head position to the neck, the position of C 0/1 joint. The less its degree is, the more extended the head should be. HTA was found (by video recording in adults 57°\(^16\), that was lower than our mean data with children. The HTA neutral mean value of the 16 year olds became slightly higher, but not significantly, compared to the 9 year olds. This is in contradiction to the observations with adults, i.e. the lesser CVA is associated to lesser HTA, which means the head posture changes to an

Table 1. CVA, HTA and SHA values (in degrees)

<table>
<thead>
<tr>
<th>ANGLES</th>
<th>AGE 9 n=147</th>
<th>AGE 16 n=143</th>
<th>MINIMUM (degree)</th>
<th>MAXIMUM (degree)</th>
<th>MEAN (degree)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVA neutral</td>
<td>AGE 9</td>
<td>40.00</td>
<td>84.00</td>
<td>60.30</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>41.00</td>
<td>63.00</td>
<td>52.35</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>CVA „resting”</td>
<td>AGE 9</td>
<td>34.00</td>
<td>72.00</td>
<td>52.98</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>31.00</td>
<td>60.00</td>
<td>48.47</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>HTA neutral</td>
<td>AGE 9</td>
<td>42.00</td>
<td>87.00</td>
<td>68.26</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>55.00</td>
<td>80.00</td>
<td>69.56</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>HTA „resting”</td>
<td>AGE 9</td>
<td>54.00</td>
<td>93.00</td>
<td>73.74</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>57.00</td>
<td>83.00</td>
<td>69.88</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>SHA neutral</td>
<td>AGE 9</td>
<td>91.00</td>
<td>123.00</td>
<td>106.41</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>90.00</td>
<td>149.00</td>
<td>119.74</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>SHA „resting”</td>
<td>AGE 9</td>
<td>91.00</td>
<td>124.00</td>
<td>107.32</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGE 16</td>
<td>95.00</td>
<td>153.00</td>
<td>120.64</td>
<td>2.54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n=147+143</th>
<th>CVA neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTA neutral</td>
<td>Correlation Coefficient -0.278(*)</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.018</td>
</tr>
<tr>
<td>SHA neutral</td>
<td>Correlation Coefficient -0.415(*)</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.018</td>
</tr>
<tr>
<td>CVA resting</td>
<td>Correlation Coefficient 0.722(**)</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed) 0.000</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Table 2. Correlations amongst neck angles (by Spearman test)

186
extended position. Our different results with children could be explained by the flexibility of the cranio-cervical segment in young age, or that might be due to individual head posture stereotype. In resting position the HTA was in negative correlation to the CVA, as expected. That means with forward bent neck an extended head posture is needed.

The angles measured in neutral and in resting posture were characteristic to what can be seen in real life. The higher degree of SHA referred to the clinical symptom, which should be called “rounded shoulder”.

The comparison of the data found in the two age groups (9–16), during 7 years, spent at school, might demonstrate a tendency to “poorer posture” with aging. That correlates to the results published by Lafond, who has also found statistically significant associations with age for “forward head translation” and “forward shoulder translation”12, which are similar the entities to “forward head/neck position”.

Conclusions

Measuring head/neck/shoulder posture by means of digital photos and the evaluation by computer program proved easy, useful method. That method should be used for further studies. Descriptive data have been obtained on neck posture in groups of 9 and 16 years old schoolchildren, and we have found a significant tendency to poorer posture with aging.

REFERENCES

10. Hanten WP, Lucio RM, Russell JL, Brun D. Assessment of total head excursion and resting

Gábor Ormos
National Institute for Rheumatology and Physiotherapy, Budapest